

IEEE/ACM DS-RT2020

Energy and Distance evaluation for Jamming Attacks in wireless networks

Emilie Bout - Valeria Loscri - Antoine Gallais

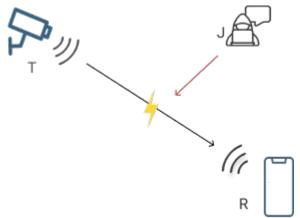
Summary

	Introduction
02.	Objectives
03.	System model
	Results
05.	Conclusion

01

Introduction

3 - 15/09/2020

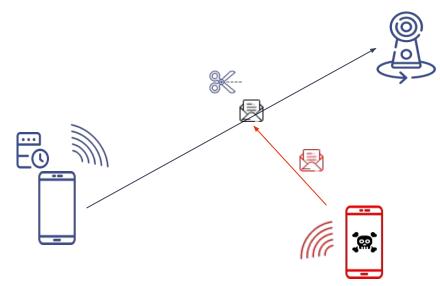

Introduction

Goal of Jamming Attack?

"Prevent the exchange of packets between the legitimate nodes of the networks."

Consequences :

- A loss of crucial information, communication.
- The lifetime of a device is reduced.
- A decrease in the Quality of Service.
- Denial-of-Services, Denial-of-Sleep



Introduction

Transmission under Jamming Attack

Two potential scenarios :

Objectives

6 - 15/09/2020

The objectives of this work:

The study objectives of jamming attacks:

- Better understand vulnerabilities
- Create more robust communications protocols, effective detection and protection systems
- Better understand the location of jamming node problem.

Related works:

- **REF1:** Ashraf, Qazi Mamoon, Mohamed Hadi Habaebi, and Md Rafiqul Islam. "Jammer localization using wireless devices with mitigation by self-configuration." Plos one 11.9 2016...
- **REF2**: Panyim, Korporn, et al. "On limited-range strategic/random jamming attacks in wireless ad hoc networks." 2009 IEEE 34th Conference on Local Computer Networks. IEEE, 2009.
- **REF3**: Commander, Clayton W., et al. "*Jamming communication networks under complete uncertainty*." *Optimization Letters* 2.1 (2008): 53-70.
- **REF4**: Li, Mingyan, Iordanis Koutsopoulos, and Radha Poovendran. "Optimal jamming attacks and network defense policies in wireless sensor networks." *IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications*. IEEE, 2007.

Hypothesis:

Jammer node assumptions:

- Constrained in energy and resources consumption
- Optimize its impact while minimizing its energy consumption.

Evaluation of many parameters together:

- energy consumption spent
- jamming efficiency
- probabilities of being detected

System model

9 - 27/10/2020

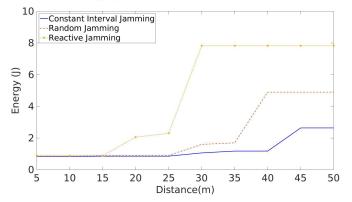
Simulation Details

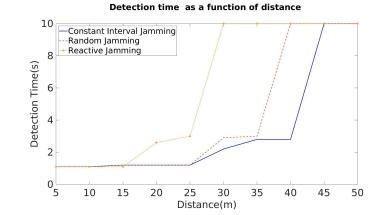
Strategies of Jamming attacks:

Parameters	Constant Jammer	Random Jammer	Reactive Jammer
Send interval(ms)	1	Between 100 and 1	Send interval of the legitimate node

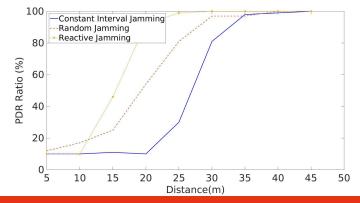
Factors taken into account:

- energy
- detection time
- impact on the networks
- the distance between the transmitter and the attacker
- the distance between the transmitter and receiver.

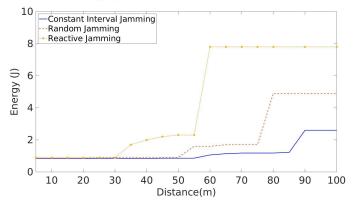


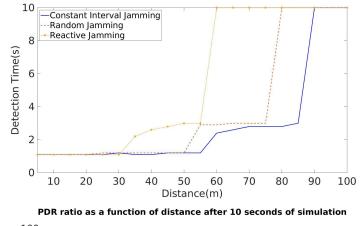


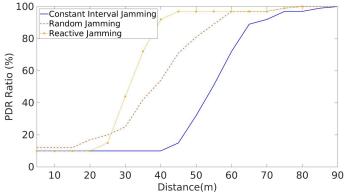
11 - 27/10/2020


Distance between transmitter and receiver	20 m
Detection threshold	99%
Start time of detection and jamming attack	1 s

Total energy spent until detection as a function of distance


PDR ratio as a function of distance after 10 seconds of simulation




Distance between transmitter and receiver	60 m
Detection threshold	99%
Start time of detection and jamming attack	1 s

Total energy spent until detection as a function of distance

Detection time as a function of distance

The choice of optimal strategy depends on many parameters:

- Position of the jammer
- Energy consumption
- Detection probability

Conclusion

15 - 15/09/2020

Discussion & Conclusion

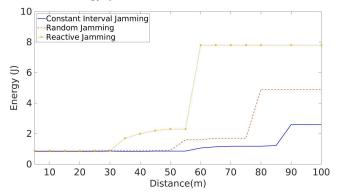
Work completed:

• The choice of optimal strategy depend on several parameters evaluated together

Future works:

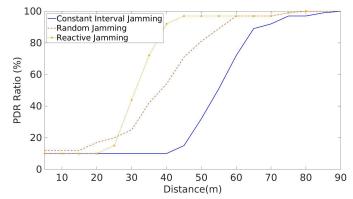
- Simulation performed under optimal conditions: detection threshold 99%.
- Conduct the same evaluation with a multitude of victim nodes
- Creation of "intelligent" jammer which chooses strategy according to evaluated parameters

Thank you !


Any questions?

emilie.bout@inria.fr

Distance between transmitter and receiver	40 m
Detection threshold	99%
Start time of detection and jamming attack	1 s


Total energy spent until detection as a function of distance

-Constant Interval Jamming -Random Jamming Reactive Jamming Detection Time(s) Distance(m)

Detection time as a function of distance

PDR ratio as a function of distance after 10 seconds of simulation

