(nría

When jamming attacks in wireless networks become (too) smart!

Summary

	Introduction
02.	Objectives
03.	A new smart Jamming Attack
	Test-bed
05.	Demonstration
06.	Results
	Conclusion

01

Introduction

Iot Networks

- **Omnipresent** in your live
- Essential roles :
 - Security element: camera, alarm
 - Health object: Pacemaker, insulin pump
- **Constrained in energy** and resources

Introduction

What is a Jamming Attack?

"Prevent the exchange of packets between the legitimate nodes of the network"

Consequences :

- Loss of crucial information, communication.
- The lifetime of a device is reduced.
- Decrease in the Quality of Service.
- Denial-of-Services Denial-of-Sleep

Introduction

Transmission under Jamming Attack

Two potential scenarios :

Introduction

Consequences in Real life ?

• In daily life: your car keys, your home security camera

• Basis of other attacks: Spoofing attack, Man in the middle attack ...

The objectives

The Objectives

- New solutions based on Machine Learning: more autonomous, more efficient
- More and more attacks based on Machine Learning algorithms
- Study, create this type of attack to better understand them
- Find vulnerabilities in machine learning algorithms to circumvent these attacks
- Jamming attacks can also be an interesting defense.

A new smart jamming Attack

10 - 06/09/2021

Several attack strategies

Successful attack = t_detect + t _jam < t_transmission

Hypothesis:

Jammer node assumptions:

- The attacker has the same WI-FI configuration
- Constrained in energy and resources consumption
- Admits 4 states: Transmission, Receiver, Sleep, Idle

Goals:

- Optimize its impact while minimizing its energy consumptior
- Be as undetectable as possible

System model

- Derive an analytical framework based on Markov Chain Theory
- Attacker Node Model and Transmitter Node Model

System model

Goals:

- Compute the probability of staying in each state in order to achieve the following objectives:
 - Maximization of the attack effectiveness by minimizing the energy consumption
 Given a certain limitation cost, the maximization of the probability that the attack is occurring in a certain time interval
 - By imposing a threshold in terms of probability the attack occurs in a certain interval time, we minimize the associated cost

The test-bed

Description of the test bench :

Composition:

- One pair of transmitter and receiver
- Raspberry Pi with Alfa device and Atheros Drivers and Firmware.

The attacker system :

- 3 types of jamming attack implemented:
 - Constant
 - Reactive
 - Markov
- Compute the **energy consumption** for each attack.

The Detection system

• Packet Delivery Ratio(PDR) on the transmitter side with ACK packet:

PDR = Total packets successfully received

Total packets send

Detection Method:

- Detection using a threshold :
 - If the PDR metric is lower than the defined threshold, an attack is detected
 - Number of observations

Parameters:

Distance transmitter -Receiver	1 m
Start of the attack	after 20 seconds
Duration of the attack	30 seconds

Number of corrupted packets

Type of Attack	Packet Error Rate
Constant	0%
Reactive	6%
Markov	31%

Detection time

Type of Attack	Detection time (seconds)
Constant	9
Reactive	_
Markov	13

Energy Consumption

Type of attack	Energy Consumption (Joules)
Constant	20.1
Reactive	13.5
Markov	10.5

- Consumes less energy than other attacks
- Greatest impact on the PDR and PER
- Reduce the flow by 15%

Conclusion

Discussion & Conclusion

- Adapt to other protocol
- Easily to create jamming attack

Thank you !

Any questions?

